资讯

多元自适应回归样条(Multivariate Adaptive Regression Splines, MARS)是Jerome Friedman于1991年提出的一种非参数回归技术。该方法专门用于建模预测变量集合与目标变量之间的复杂非线性关系,无需预先确定具体的函数形式。本文将深入探讨MARS算法的核心原理,并详细阐述其在时间序列预测任务中的应用策略与技术实现。
近端策略优化(Proximal Policy Optimization, PPO)作为强化学习领域的重要算法,在众多实际应用中展现出卓越的性能。本文将详细介绍PPO算法的核心原理,并提供完整的PyTorch实现方案。