资讯

过去几年,AI领域仿佛被一条名为“Scaling Law”的法则所统治。人们坚信,只要模型足够大、数据足够多、算力足够强,AI的性能就能一路攀升,无所不能。OpenAI的GPT系列、谷歌的PaLM等模型的成功,似乎完美印证了这一点。
很多人认为,Scaling Law 正在面临收益递减,因此继续扩大计算规模训练模型的做法正在被质疑。最近的观察给出了不一样的结论。研究发现,哪怕模型在「单步任务」上的准确率提升越来越慢,这些小小的进步叠加起来,也能让模型完成的任务长度实现「指数级增长」,而这一点可能在现实中更有经济价值。
Step by step, China has demonstrated its commitment to delivering on its word and taking action, adding fresh impetus to the ...
JOHANNESBURG, Sept. 16 (Xinhua) -- South Africa's newly gazetted National Land Transport Amendment Act is expected to transform the sector by improving commuter safety, promoting non-motorized ...
BEIJING, Sept. 8 (Xinhua) -- Chinese lawmakers have begun reviewing a draft revision to the Enterprise Bankruptcy Law, as part of efforts to improve the market exit system. The draft revision to the ...